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IX. Dark Energy

In recent years evidence has accumulated that the universe is indeed critically
bound as predicted by inflationary cosmology, and while 30% of the current mass
density is in the form of baryons or “dark matter” that clusters like galaxies, about
70% is in a form of matter that does not cluster. Furthere there is evidence that
the universe is actually accelerating (q0 < 0). The form of this matter is not
well understood, but the term “dark energy” has been coined to describe it. In this
chapter we revisit the derivations of chapters 5 to 8 and present revised formulations
that incorporate the dark energy.

A. Equation of State

Although the nature of the dark energy is completely unknown, the evidence
for an accelerating universe forces us to consider a field with an equation of state
of the form

P = wρ, (9.1)

the same as Eq. (8.1), with w < 0. The case w = −1 corresponds to constant
vacuum energy density. Such an equation of state gives rise to a term in the Einstein
field equations that is identical to that of the classic cosmological constant originally
introduced by Einstein to produce a static universe. Einstein originally viewed this
term as being a modification to the law of gravity and thus rejected it once it was
learned that the universe is, in fact, expanding. However, if one interprets the term
as arising from a particular form of mass-energy (moving the term from the left side
of the equation to the right side) then the motivation for whether to include it or
not becomes quite different. Even if the interpretation is different, mass-energy of
this form is still referred to as a “cosmological constant.”

A constant vacuum energy density leads us to the uncomfortable situation that
we are living at a special epoch, because the ratio of ordinary matter density to dark
energy density changes with time, and the fact that they are nearly equal today
means that we are living at a magic time. This has led theorists to consider theories
of dark energy that lead to an equation of state where w is different from -1, and
in fact, w need not be constant (although we will not consider such a general case
here.) Such mass-energy has been called “quintessence”.

B. Dynamics

The energy and acceleration equations has been derived in Eq. (8.6) and (8.7),
where we now show the separate contributions of dark matter (including baryons
and other zero pressure species) (ρM) and dark energy (ρΛ) explicitly. For simplicity,
we will only consider the case w = −1.
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R̈ = −4

3
πG(ρM − 2ρΛ), (9.2)

1

2
Ṙ2 =

4

3
πG(ρM + ρΛ)R2 − 1

2
k. (9.3)

The dependence of the different types of matter on radius are given by

ρDM =
K

R3
(9.4)

and
ρDE =

α

R3(1+w)
. (9.5)

Equation (9.3) can be cast in dimensionless form as follows:
1. Let Rs = c/H0;
2. Let the dimensionless radius x = R/Rs. Since the volume encompassed by R

itself is not yet specified, we do so now by requiring that x = 1 today;
3. Let the dimensionless time θ = t/H0;
4. The critical density today is ρcrit0 = 3H2

0/8πG;
5. Let the density of dark matter today ρDM0 = ΩDM0 ρcrit0 ;
6. Let the density of dark energy today ρDE0 = ΩDE0 ρcrit0 .

With these definitions, we find thatK = ΩDM
0 R3

sρ
crit
0 and α = ΩDE0 R3(1+w)

s ρcrit0 .
Equation (9.3) reduces to

dx

dθ
=

√
ΩDM0

x
+

ΩDE0

x1+3w
. (9.6)

For arbitrary w, this equation must be integrated numerically. Figure 9.1 shows
the dependence of x on θ for a representative set of values of w.

We can once again manipulate Eqs. (8.6) and (8.8) to determine how various
quantities such as H and q vary as a function of redshift. The main domain of
interest is the present era, when dark energy is becoming dominant, so for simplicity,
let us take w = −1 (a cosmological constant type universe) for the dark energy
component. Equation (8.6) can be written in the form:

H2 =
8

3
πG(ρM + ρΛ)− k

R2
, (9.7)

where ρM is the density of “cold” matter (baryons plus dark) and ρΛ is the density
of dark energy. We have also made use of the fact that ε = −k/2. Let ΩM =
ρM/(3H

2/8πG) and ΩΛ = ρΛ/(3H
2/8πG). [Note: the classic cosmological constant

parameter Λ = 8πGρΛ.] Rearranging Eq. (9.7), we find

R =
1

H
√
k(ΩM + ΩΛ − 1)

(9.8)
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The dependence of density on redshift is given by

ρM =
3Ω0

m

8πG
H2

0 (1 + z)3, (9.9)

ρΛ =
3Ω0

Λ

8πG
H2

0 . (9.10)

Substituting these into Eq. (9.7), we find

H2 = H2
0 [(1 + z)2(1 + Ω0

Mz)− Ω0
Λz(2 + z)]. (9.11)

Finally, from Eqs. (9.2) and (9.11) and the definition of q, we find

q =
1

2

(1 + z)3Ω0
M − 2Ω0

Λ

(1 + z)2(1 + Ω0
Mz)− ΩΛz(2 + z)

. (9.12)

If Ω0
Λ = 1 and Ω0

M = 0 we have q0 = −1.

C. Observables

Chapter 6 provided the basic recipes for computing various observable quanti-
ties; however, many of the equations in that chapter are applicable only to a matter
dominated universe. In this section, we indicate the modifications needed to accom-
modate a dark energy component of the universe. It is important to remember that
we are treating dark energy only in the case that the universe is critically bound,
whereas Chapter 6 dealt with arbitrary values of the density relative to critical. It
would be straightforward to include bound or unbound models in this section, but
the increase in parameter space would make the discussion unwieldly.

First, Eq. (6.2), which gives a prescription for computing the comoving distance
u to an object, and Eq. (6.5), which relates redshift z to radius R, are still completely
valid. Equation (6.15), which defines an intermediate parameter Z, needs additional
work, but since this parameter is used explicitly in many of the equations to compute
flux, angular diameters, number counts, etc, virtually all the equations in Chapters
6 and 7 that compute physical quantities in terms of Z can be used unchanged.

Equation (6.15) defines Z to be

Z = R0H0Sk(u), (9.13)

where u is the comoving distance between an observer today and a distant object
at redshift z. This equation omits the replacement of u with conformal time θ0− θz
because the latter is valid only for a universe of ordinary matter. A convenient
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expression for u can be derived by combining Eqs. (6.14) and (9.11). With a bit of
rearranging, we find

R0H0u =
∫ z

0

dz′√
(1 + z′)2(1 + Ω0

Mz
′)− Ω0

Λz
′(2 + z′)

. (9.14)

If the universe is not critically bound, we can use Eq. (9.8) to compute R0H0:

R0H0 =
1√

k(Ω0
M + Ω0

Λ − 1)
. (9.15)

If the universe is critically bound, Eq. (9.13) reduces to

Z = R0H0u, (9.16)

so Z is given by the right side of Eq. (9.14) directly.

Equation (9.14) must, once again, be integrated numerically. Equations (9.15),
(9.13), and (9.14) may be combined with other equations in Chapters 6 and 7
to compute various observable quantities such as bolometric luminosity, number
counts, etc. For quantities such as the differential number counts as a function of
redshift (Eq. 7.10), there is one extra step necessary:

dN

dz
= ρ0R

3
0u

2du

dz
. (9.18)

We need du/dz. From Eq. (9.14), we find

R0
du

dz
=

1

H0

√
(1 + z′)2(1 + Ω0

Mz
′)− Ω0

Λz
′(2 + z′)

. (9.19)

Plugging in Eqs. (9.14) and (9.19) into (9.18) gives the desired result,

D. Tests of Dark Energy Using Galaxy Clusters

One of the proposed tests for measuring the dark energy parameter w is to count
galaxy clusters to high redshift. The equations required are (9.18), which gives the
fundamental equation, and (11.xxx), which gives the comoving density of galaxy
clusters as a function of their mass. Auxiliary equations include (9.14) and (9.19).
Combining everything together, we find that

dN

dΩdzd lnM
=

ρ0c
3

H3
0M∗

u2du

dz

√
2

π

1

D(z)

(
M

M∗

)α−1

α e
−1/[2D(z)2]

(
M
M∗

)2α

. (9.20)

Here, N is the cumulative number of clusters as a function of mass, redshift, and
angular area on the sky.

The front-end constants can be simplified by making use of the definitions of ρ0

and M∗. After some manipulation, one finds:

dN

dΩdzd lnM
=

c

8H0

(
3

4π

)(
1.69

σ8

) 1
α

u2du

dz

√
2

π

1

D(z)

(
M

M∗

)α−1

α e
−1/[2D(z)2]

(
M
M∗

)2α

.

(9.21)


